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This final report is a deliverable required under contract N00014-97-1-1081 between the Office of Naval
Research and the University of Wyoming, Dr. Andrew C. Hansen, Principal Investigator. The report, as
per the subject contract, addresses technical issues related to development and implementation of a finite
element based failure analysis for composite structures.

I. Executive Summary

Background

A majority of structural failure criteria developed for composite materials to date can be classified as
macromechanical because the criteria attempt to predict failure using composite stress-strain data. A key
element of macromechanics is the combining of constituent properties into a homogeneous set of
composite lamina properties and possibly combining lamina properties into homogeneous laminate
properties. In contrast, micromechanical failure analyses retain the individual identities of the lamina
and their constituents. Micromechanical failure models have seen limited application in structural
analyses due to the difficulty in acquiring information at the constituent level.

In this research, we develop a progressive failure analysis for composite structural laminates based on
constituent (phase averaged) stress fields. Damage in a composite material typically begins at the
constituent level and may, in fact, be limited to only one constituent in some situations. An accurate
prediction of constituent failure at sampling points throughout a laminate provides a genesis for
progressively analyzing damage propagation in a composite structure. A constituent based failure model
also allows one to identify intermediate damage modes.

The failure analysis approach presented utilizes the classic strain decomposition put forth by Hill to
extract constituent stress and strain fields during a routine finite element analysis at the structural level.
We refer to this approach as a Multicontinuum Theory (MCT) in recognition of the continuum nature of
the constituent stress and strains. Constituent-based, quadratic, stress-interactive, failure criteria are
developed to take advantage of the micro-scale information provided by MCT. The criteria are fully
three-dimensional and require a minimum number of experimentally derived constants. A finite element
implementation utilizing the proposed failure criteria was used to generate one-dimensional stress-strain
curves and two-dimensional failure surfaces for a variety of composite laminates under uniaxial and
biaxial loads. The results were shown to be superior to comparable single continuum failure analyses
and in good agreement with experimentally determined failure loads.

Figure 1 shows experimentally determined biaxial failure data along with two-dimensional failure
surfaces developed using MCT and the classic Tsai-Wu failure criterion. The agreement between the
MCT analysis and the experimental data is excellent. We note the failure envelope of Figure 1 predicted
by MCT appears to be nothing more than what a maximum stress criterion would yield. Thisisa
fortuitous result that is attributed to biaxial testing of a [0/90]s laminate. Other stress paths produce no
correlation to @ maximum stress criterion.

The lack of accuracy in the Tsai-Wu predictions can be attributed to the inability to distinguish between
constituent failure and total failure at a continuum point. The inability to differentiate between minor
(matrix) and major (fiber) constituent damage over penalizes any simulation of a laminate’s load carrying




capability. Clearly, any delineation between matrix and fiber failure is not possible for failure criteria
that do not identify a failure mode. The multicontinuum failure analyses developed here-in naturally
accounts for constituent failure and further provides a rigorous methodology for determining composite

properties for intermediate failure states.
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Fig. 1. AS4/3501 [0/90]s laminate biaxial failure envelopes for combined 0-90 loading.

Accomplishments

The overall objective of the proposed research was to investigate the effectiveness of using constituent
level data in determining composite failure. We have met or exceeded all goals and expectations related
to this objective. Specific technical milestones we have achieved are identified below.

e We have successfully implemented constituent based failure algorithms in a finite element
environment. The algorithm allows a user to access constituent information, determine
constituent failure, and soften the structure appropriately without a time penalty when compared
to a traditional structural analysis. We have also demonstrated that constituent information
significantly improves failure predictions for unidirectional laminates when compared to
traditional single continuum theories.

e The original effort outlined in this proposal was directed at failure investigations for continuous
fiber unidirectional composite laminates. However, the predominance of woven fabric
architectures in Navy systems makes it imperative to extend the MCT technology to
accommodate woven fabrics. We have accomplished this task.




To begin, we successfully developed a finite element micromechanics model for a plain weave
composite material designed to simulate the microstructure of woven fabric panels fabricated by
Seemann Composites, Inc. Seemann Composites uses the SCRIMP technology to fabricate
composite panels on a large scale with near aircraft quality. The micromechanics model has
been used to generate a large constituent based failure database.

We have also successfully developed a progressive failure analyses for a plain weave using the
MCT technology. The model shows excellent correlation when compared with experimental
data for uniaxial and shear tests. The model was also correlated to a simple structural test on
angle brackets made from woven fabric panels fabricated by Seemann Composites. Angle
brackets with two different fabric orientations were tested and analyzed using MCT. The
experimental ultimate load for the two configurations varied by approximately 20 percent. In
both cases, the MCT analysis predicted structural failure within 10 percent of the experimental
load.

Although not a specific task in this proposal, the MCT technology has been implemented in the
commercial finite element code ABAQUS. Navy engineers at NSWC, Carderock are currently
working with this version of ABAQUS to study failure predictions for composite structures of
Navy interest.

Two papers have been written to date on the developments of MCT related to this proposal.
These papers are presented in Section Il and represent the technical section of this report. The
first paper in Section II is being submitted to the Journal of Mechanics of Composite Materials
and Structures. The paper clearly demonstrates the value of constituent based failure
predictions.

The second paper in Section II has been accepted for publication pending 3 minor modifications
as part of the World Wide Failure Exercise conducted by DERA, Great Britain. This exercise
involved making blind predictions of failure in composites based on material properties supplied
by the organizers. A second paper related to this exercise will be forthcoming in which we are
given full access to the data. Differences between are original predictions and the data supplied
must be explained in this work. We expect to see the data this month.

We are in the process of preparing a third paper for publication based on failure analysis of
woven fabric composites. This work is unique from our previous MCT analyses in that a weave
consists of 3 constituents as opposed to two. The additional constituent results in a significant
increase in the level of complexity.

Education of graduate students was a major component of the proposal. We have graduated 3
MS students and one Ph.D. student who were supported by funds provided by this grant. The
Ph.D. student is now working as an Assistant Professor and is conducting research in composite
materials. Two of the three MS students have industry jobs related to the analysis of composite
materials. The third MS student is working in the software industry.

Three appendices are provided as part of this final report. These documents are essentially
dissertations and theses written by students funded under this work. Appendix A addresses the
implementation of MCT and subsequent failure analysis of unidirectional composites in a finite
element environment. A layered brick finite element was developed for this purpose. The
element can accommodate up to 100 layers in a structure. Within each layer, the constituent




II.

(phase averaged) stress and strain fields are available to the analysts. The development of the
Jayered brick element and implementation of constituent based failure criteria represented a
fundamental task in the proposal. Appendix A has also been released as a full Navy report from
the Naval Surface Warfare Center, Carderock Division (NSWCCD-65-TR-1999/15).

Appendix B was research devoted to implementing progressive failure with MCT for viscoelastic
material behavior. A structural component consisting of an angle bracket was also
experimentally taken to failure and analyzed analytically. F inally, Appendix C provides the
details to implementing MCT for woven fabrics.

The proposed research has provided a spin-off business for Wyoming’s software industry.
Specifically, an ONR/SBIR grant has provided funding to commercialize the MCT technology.

The research conducted under this grant has provided new research opportunities in the area of
dynamic analysis of composite structures as it pertains to strain rate hardening and progressive
failure. We have made significant strides in developing a strain rate hardening continuum
damage model that is readily embedded into MCT. We intend to integrate the strain rate
hardening model into the LSDYNA-3D computational framework. LSDYNA-3D isa
commercial finite element package, and standard Navy analysis tool, for problems involving
dynamic loads.

Technical Report

The technical report presented below is provided in the form of two technical manuscripts as discussed in
the executive summary.




Paper A

Multicontinuum Failure Analysis of Composite Structural Laminates
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ABSTRACT: Damage in a composite typically begins at the constituent level and may, in fact, be

limited to only one constituent in some situations. Accurate predictions of constituent damage at points

in a laminate provide a genesis for progressively analyzing failure of a composite structure from start to

finish.

In this paper, we develop an efficient constituent based failure analysis for composite structural

laminates. Continuum based (phase averaged) constituent stress and strain fields are computed in a finite

element environment without a computational time penalty. Constituent stress-based failure criteria are

developed and used to construct a progressive failure algorithm where one constituent is allowed to fail

while the other constituent remains intact, e.g. matrix cracking.

' Formerly of the Structures and Composites Department , Naval Surface Warfare Center, Carderock Division
* Corresponding author




The proposed failure algorithm was used to predict failure of a variety of laminates under
uniaxial and biaxial loads. The results were shown to be superior to comparable single continuum failure

analyses and in good agreement with experimentally determined failure loads.

Introduction

The success of continuum mechanics in predicting failure in homogeneous materials is truly
remarkable. Failure theories such as maximum stress, maximum strain, and maximum distortional strain
energy all utilize stress and strain fields based on the continuum hypothesis. Traditional fracture
mechanics also invokes the continuum assumption with great success.

The continuum definition of stress or strain is simply the volume average of the local
microscopic field of interest. For instance, the average (homogenized) value used to characterize the
stress tensor at a “continuum point”, shown in the hypothetical micrograph of Figure 1, is derived by

taking a volume average of all stresses in the region:
1
g=—fg&MV, (1)
Vb

where D is the region representing the continuum point.

While the single continuum hypothesis has worked well for predicting failure in homogeneous
materials, it has certainly met with less success when applied to the myriad of composite materials in use
today. The chief difficulty encountered clearly stems from applying the continuum hypothesis to a
material composed of two or more constituents with drastically different material properties. To counter
this problem, a natural extension of a single continuum theory is to treat the material as a multicontinuum
where the individual constituents are allowed to retain their identity. In the case of the continuum stress
tensor, we simply extend the definition of stress in Eqn (1) down to the constituent level. In particular,
for the continuum point of Figure 1, volume averaged stresses for the fibers (f) and matrix (m) may be

expressed as




f - fiber

m - matrix

Figure 1. Macroscopic view of a continuum point with two clearly identifiable constituents.

o =5 | e@ar, @
Vf Df
and
1
Qm=—f g (x)dv, 3)
where
D=Df U D,.

In this paper, we develop a progressive failure analysis for composite structural laminates based
on the constituent stress fields defined by Eqn (2) and Eqn (3). The approach utilizes the classic strain
decomposition put forth by Hill [1] to extract constituent stress and strain fields during a routine finite
element analysis. We refer to this approach as a Multicontinuum Theory (MCT) in recognition of the

coexisting continua and the phase averaged nature of the constituent stress and strain fields.




The dominant composite (macroscopic) failure criteria in use today recognize the effect of stress,
or strain, component interaction on material failure. . A major contribution in this area is the work of
Tsai and Wu [2] where they developed an invariant based failure theory that is quadratic in stress
interaction. Although the Tsai-Wu criterion works well in many load cases, there are also many
situations where difficulties arise. Again, a major source of the difficulties encountered may be traced to
the presence of two constituent materials with significantly different mechanical properties.

In order to account for the uniquely different failure mechanisms occurring at the constituent
level, Hashin [3] developed a three-dimensional quadratic stress interactive failure analysis that
recognized two distinct and uncoupled failure modes; fiber versus matrix influenced. We adopt the view
of Hashin and also develop separate failure criteria for the fiber and matrix failure modes. However, ina
major departure from Hashin’s work, we develop constituent failure criteria in terms of constituent stress
fields produced by an MCT analysis. In contrast, Hashin utilized composite stresses for both constituent

failure modes.

The difference between composite and constituent stress fields can be profound. For instance,
consider a transverse tension loading of a continuous fiber unidirectional composite material where
6,,>0. The composite stress state is strictly one-dimensional whereas the constituent stress state is three-
dimensional. Furthermore, the matrix normal stresses (61, and G33,,) in the unloaded direction are often
of comparable magnitude when compared to the matrix stress (G2.x )in the loaded direction [4].

Clearly, for a constituent stress based failure criterion, one would expect improved failure
predictions using the constituent stress fields as opposed to the composite stress fields. To verify this
hypothesis, MCT failure predictions using constituent stress information are benchmarked against failure
predictions using Hashin’s approach as well as the Tsai-Wu failure criterion. Results show access to
constituent information provided by MCT leads to improved failure predictions that are also in close

agreement with experimental data.




Multicontinuum Theory

Let the composite and constituent stress fields be defined by Eqgs (1)-(3).
Combining these equations leads directly to
ngf gf+Vm gm’ (4)

where Vyand ¥, are the volume fractions of fiber and matrix, respectively.
Likewise, for strains we have

e=V,e,+V, € (5)

m ~m"*
We emphasize again the averaging process that results in these equations. That is, we are not concerned
with stress and strain variations through individual constituents at the microscopic level but only with
their phase averaged values. This is an information compromise that separates structural analysis from
micromechanical analysis. Accounting for stress variations throughout individual fibers and their
surrounding matrix material, even in a modest structure, is simply not possible or desirable. Finite
element solutions of structural problems produce stress and strain fields of the composite, thereby
providing two of the four unknowns in Eqgs (4) and (5). To provide closure of the equations, constitutive
relations are required for the composite as well as the constituents. Assuming elastic behavior for the

composite and constituents there follows:

{o1=[cl(e}-{e.)), ©)
{o-f}z[cf]({gf}—{gfo})’ (7
fo.t=[c.1(e. 1o D ®

where [C] and [Cg] represent material stiffness matrices and {&,}and {&s,} are thermal strains. Let the

thermal strains be defined as

{e.}=0{a}, ept=01{a,}. {eno}=0{a,},

10




where {a} represents the coefficients of thermal expansion and @1s the relative temperature. Eqs @-(8)

can be combined to yield an expression for the constituent strain {¢} as a function of the composite strain

given by
e} =, []+7,[4])" ({e}-0fa}) , ©

where

[4]=-2=([c]-[c, )" ([c]-Lc.. D).

f

[1] is the identity matrix,

and {a}=(lc1-le, 1) (cXet-v, [, Mo }-male, Han})

Typically [C{, [Cn), {7}, and {a;,}, are assumed known material properties of the constituents.
Composite terms, [C] and {a}, can be developed from micromechanical modeling using the constituent
values as input [4].

Substituting Eqn (9) back into (5) yields an expression for {&7} as
1
e }=— (e}~ ten})- (10)
Vf

Eqs (9) and (10) allow phase averaged constituent strains to be to be calculated from composite strains at

any point in the finite element model. Using Egs. (7) and (8), constituent stresses can be calculated.

Failure Criteria

In what follows, we develop failure criteria for the constituents in a composite. It is critically
important to recognize these criteria are applied at the structural level. As such, there are microstructural
considerations which fundamentally alter one’s viewpoint of constituent failure. Specifically, anisotropic
failure theories must be used on seemingly isotropic matrix materials. For example, consider a
transversely isotropic unidirectional composite with an isotropic matrix material. If all fibers were

removed, leaving their holes, the macroscopic (structural) behavior of the remaining matrix material will

11




.

be transversely isotropic because of the microstructure. Furthermore, the presence of fibers as

reinforcement, while altering the response of the composite, will still result in macroscopically
transversely isotropic failure modes for the matrix material.

In developing constituent failure criteria for a unidirectional lamina, a local orthogonal
coordinate system is defined in which the fiber axis serves as the principal, x;, material direction, and x,,
x; the transverse directions. Since the material microstructure, is assumed invariant under rotations about
the principal material direction, the failure state of either constituent can be expressed in terms of the
following transversely isotropic stress invariants

I, =0y,

I, =0, +0y,

I, =0}, +05 +207, (11)

I, = 0122 + 0'123 s

Iy = 0-220-122 + O'330-123 +20,0,,0,;.
A choice of a quadratic form eliminates /5 from appearing in the failure criterion. Therefore the most
general form for a quadratic criterion is

KI, +LI}+K,[,+LI1+M, I I,+K,I,+K,I, =1 . (12)

As discussed previously, we adopt the view of Hashin and develop separate failure criteria for
the fiber and matrix failure modes. However, rather than using composite stresses to predict constituent
failure, we use constituent stress fields to predict constituent failure. As a consequence, the transversely
isotropic stress invariants, defined in Eqn (11), were used for each constituent in the failure criterion of
Eqn (12). Furthermore, we follow the reasoning of Hashin [3] and recognize that a composite typically
has different ultimate strengths in tension and compression, so both fiber and matrix failure criteria have
tensile and compressive subforms. Hence, the lead coefficients in Eqn (12) are functions of only tension

or compression strengths resulting in a continuous but not smooth failure surface in stress space.

12




Finally, we simplify Eqn (12) by setting the normal stress interaction term M, to zero based on
the work of Pipes and Cole [5] and Narayanaswami [6]. Tsai and Wu [2] suggest the linear terms in Eqn
(12) are necessary to account for internal stresses. Internal (constituent level) stresses are accounted for
in the formulation of Multicontinuum Theory so the linear terms are also eliminated from Eqn (12).
Therefore, the general form for a stress interactive failure criterion, after changing to a consistent”
coefficient notation, is given by

K1112+K2122+K3I3+K4I4=1. (13)

Developing a form of Eqn (13) for fiber failure, we note that the majority of fibers used for
composite reinforcement have greater transverse strengths than the matrices commonly used in
conjunction with them. Hence, we assume that transverse failure of these composites is matrix
dominated. Based on this assumption, we set K and K equal to zero in Eqn (13) as their associated
stress invariants involve transverse normal stresses. The fiber failure criterion reduces to:

K A +K, I, =1. (14)
We note the effect of neglecting terms involving K,and K, could be revisited should failure predictions
prove to be inadequate.

To determine K,,and Ky, we solve Eqn (14) considering individual load cases of pure in-plane
shear, tension, and compression. Let Sj-and Sj,, denote failure strengths of the fiber and matrix
constituents, respectively. We further delineate between tension and compression ultimate strengths
using a + or - superscript.

For the case of in-plane shear load only (ai,,=0), we find

1

Yoosh,

K

where S),rdenotes the fiber shear stress at failure.

For the case of tensile load only (011> 0; Gy5r= 0), we find

13




. ]
K=o

1f

For the case of compression load only (i1, < 0; 012 = 0), we find

The criterion for fiber failure can now be expressed as:
K I+ K 1, =1, (15)

The + symbol indicates that the appropriate tensile or compressive ultimate strength value is used
depending on the constituent’s stress state.

To determine the coefficients of Eqn (13) for matrix failure we first solve the equation
considering load cases of pure in-plane and transverse shear. For the case of transverse shear only
(C11m=022m=033m=012m = 0), we find

1
K, ==
2S23m

For the case of in-plane shear only (0y1,=032,=033n=023»= 0), we find

1

4m = 2 .
S12m

Noting that a majority of fibers used for composite reinforcement have greater longitudinal strengths than
the matrices commonly used in conjunction with them, we assume that the longitudinal failure of these
composites is fiber dominated. Based on this assumption (and some numerical sensitivity studies) we set

K, equal to zero. Incorporating these results into Eqn (13) gives

K2m122m +,—_1;—_13m +S_1-—
23m 12m

1, =1. (16)

To determine K,,, we consider the case of transverse tensile load only (62:,=612,=0; (G22mt O33m ) > 0)

and find

14




+ 1 +S222m ++22S323m
sz = + +22 2 1 B 2S2 )
(*Syam+2Ssam ) -

For the constituent strength parameters, the subscript is the component of stress at failure while the
superscript is the direction of ultimate applied load, e.g., Y228 1S the 33 strength parameter when an
ultimate tensile load is applied in the x; direction. Care must be taken not to interpret 2283, a5 an
ultimate transverse strength in the x; direction as there is no external load in this direction.

For the case of a pure transverse compressive load (G23,=012,=0;

(Gt O33m) <0)

_K _ 1 1 _ _S;2m+_22S323m
2m T 2 2 2S2 .
( S22m + 33m ) 23m

The criterion for matrix failure can now be expressed as
iKZMIZZM +K,,1, + K, 1, =1. a7

The MCT failure criteria defined by Eqgs (15) and (17) require determining seven failure
parameters, K, s Ky *Kom, Ksms and Ka,n. These parameters are functions of constituent strengths, S 5
Si2p 2 oms 2 2S33ms Siam, and Sas,,. Constituent strength parameters are derived from experimentally
determined composite values. The link establishing a relationship between composite (macro) and
constituent (micro) strengths is a finite element micromechanics model for a continuous fiber
unidirectional composite. The finite element micromechanics model used in this research is based on an
assumption of uniform hexagonal fiber packing within the lamina’s matrix (Figure 2).

Determining which constituent precipitates composite failure is necessary for establishing
accurate constituent failure values. Identifying the constituent that precipitates failure in longitudinal and
transverse lamina tension and compression tests is intuitive and straightforward, i.e., fiber failure for
longitudinal loads and matrix failure for transverse loads. Identifying the constituent leading to shear

failure is more problematic as non-catastrophic matrix damage begins well before ultimate composite

15




Matrix

Fiber

Figure 2. Hexagonal packing for a continuous fiber unidirectional composite.

strengths are reached. The reader is referred to Mayes [7] for details behind determining constituent

failure strengths in shear.

The Failure Algorithm

The failure theory outlined above was implemented within the framework of a conventional
finite element analysis, thereby providing a vehicle for progressive failure analysis of composite
laminates. The analysis utilizes a nonlinear-elastic constitutive model developed by Mayes [7] that
allowed for nonlinear shear behavior while assuming linear behavior for tensile and compressive loads.

The nonlinear character of the analysis requires the load to be incrementally applied. The
composite material damage state at every Gauss point in the finite element model is stored for the entire
analysis. Initially, composite material properties are set to an undamaged condition. At each load step a

damage algorithm, using the failure criteria formulated in Egs (15) and (17), checks each Gauss point for

16




constituent failure based on cumulative stresses. If constituent failure is detected, the corresponding
moduli are reduced to a near zero value. (Near zero values are used rather than zero to avoid numerical
difficulties.) We emphasize that since both intact and failed constituent properties afe known a priori,
micromechanics can be used to determine damaged composite properties due to a failed constituent
outside the MCT program and prior to a structural analysis.

When constituent failure is detected at a Gauss point, stresses are recalculated using accumulated
strains and updated material properties. Gradual softening of the structure due to constituent material
failure and the nonlinear-elastic constitutive model causes an equilibrium imbalance between the applied
(external) and internal load vectors. A standard Modified Newton-Raphson nonlinear iterative procedure

within each load is used to achieve equilibrium prior to the next load step.

Comparison of Analysis Versus Experiment

In this section, results from MCT failure analyses are compared against experimental data of
laminates fabricated from two different materials and tested under uniaxial and biaxial load conditions.
The first material studied consisted of E-glass/ vinylester (Dow 8084) laminates fabricated by Seemann
Composites, Inc. The second material consisted of carbon/epoxy (AS4/Hercules 3501-6) laminates
fabricated by the Composite Materials Research Group at the University of Wyoming. Experimentally
determined elastic constants and failure parameters for the composite and the constituents for both

materials are given in Tables 1-5 [7].

Stress-strain curves are used to qualify MCT’s ability to simulate laminate structural behavior.
Over twenty stress-strain plots are presented in Mayes [7]. We present a single plot here that brings out
the salient features of the analysis. Specifically, Figure 3 shows the stress-strain response for a quasi-
isotropic [0/+45/90]s E-glass/vinylester laminate under uniaxial tension. The figure shows MCT stress-
strain predictions incorporating constituent failure as well as a linear elastic prediction. The introduction

of constituent failure is clearly necessary to simulate the stress-strain response. Matrix tensile failure

17



occurred analytically in the 90° plies at approximately 80 MPa. Later in the load history, a combination
of tensile and shear stresses matrix failure in the +45° plies was predicted by MCT prior to catastrophic
tensile fiber failure in the 0° plies. Ultimate failure loads were within 13% of the experimental value.
MCT failure predictions are benchmarked against Hashin’s failure analysis for a variety of E-
glass/vinylester and carbon/epoxy laminates. When constituent failure is determined using either
approach, the corresponding failed composite properties are reduced in an identical manner according to
finite element micromechanics analyses conducted previously. The intent of this exercise is to isolate the
effect of using constituent information provided by MCT. Specifically, does constituent stress
information result in improved predictive capability for failure of composite materials when compared to

comparable failure criteria that utilize composite stress information? Finally, failure predictions
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Composite E;; (GPa) E,; (GPa) Gy, (GPa) G,; (Gpa) Via FVF
AS4/3501 134.0 9.14 7.29 3.16 0.261 0.66
E-glass/8084 38.5 11.7 4.74 4.34 0.273 0.51
Table 1. Composite elastic constants derived from experimental data.
Constituent E” (GPa) Ezz (GPa) G12 (GPa) G23 (GPa) Vi2 Va3
AS4 carbon 201.0 13.5 95.0 4.90 0.22 0.25
3501-6 epoxy 4.30 4.30 1.59 1.59 0.35 0.35
E-glass 71.0 71.0 28.2 28.2 0.260 0.260
8084 vinylester 4.66 4.66 1.80 1.80 0.292 0.292
Table 2. In situ elastic constants for constituents.
. +S1 1 _Sll +‘SVZZ _S22 SlZ S23
Composite (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)
AS4/3501-6 1335. -1992. 28.0 -282. 115. 33.0
E-glass/8084 818. -760. 45.3 -144.3 60.8 48.5
Table 3. Composite ultimate strengths.
. * Sl] _Sll +‘S'ZZ —SZZ Sll SZ}
Fiber (MPa) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa)
AS4 1335. -1992. 28. -282. 115. 33.
E-glass 1507. -1399. 1507. -1399. 120. 120.
Table 4. In situ fiber strengths.
_ 'Sp" (MPa) | TS," SET | SR | Syt | Sa”
Matrix (MPa) (MPa) | (MPa) | (MPa) | (MPa)
3501-6 22.6 -228. -3.63 36.7 45.1 25.0
8084 37.1 -118. 2.20 -7.04 344 25.2

Table 5. In situ matrix strengths.
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using the popular Tsai-Wu criterion are included for completeness. It should be noted that the Tsai-Wu

stress interaction terms were set to zero.

Table 6 compares MCT, Hashin, and Tsai-Wu failure predictions for E-glass/vinylester
laminates. A metric of predictive accuracy or “modeling bias” (predicted/experimental values) shows all
theories performed respectably although MCT produced significantly less scatter overall as measured by
the coefficient of variation (COV = standard deviation/mean average). A comparison of the two
constituent based failure criteria shows the MCT algorithm predicted failure within 10 % of the
experimental load in 12 of 13 cases. In contrast, the Hashin criterion was within 10 % on 8 of 13 cases
considered.

Failure data for laminate specimens fabricated from carbon/epoxy (AS4/ Hercules 3501-6)
composites are summarized in Table 7. In comparing the constituent based criteria, the COV for MCT
and Hashin theories was 14.3% and 19.8 %, respectively. A close inspection of the table shows that, in
general, MCT failure predictions were significantly closer to experimental values than those produced
using Hashin’s. The Tsai-Wu criterion faired considerably worse than either of the constituent based
failure criteria.

Arguments can be made that most composite structures typically operate under multi-axial load
states. Therefore, testing composite laminates under such conditions would be the prudent course of
action. Unfortunately, triaxial or biaxial load tests of composite laminates are considerably more
difficult to accomplish than uniaxial load tests. As a result, there is a paucity of multi-axial experimental
failure data to verify analysis. Welsh [8] designed and fabricated a triaxial test frame and experimentally
developed biaxial (tension-tension and tension-compression) failure surfaces for carbon/epoxy [0/90]s
laminates. The experimentally determined biaxial failure data along with two dimensional failure
surfaces developed using MCT and Tsai-Wu failure criteria are shown in Figure 4.

Hashin’s criterion is not shown since, for this simple laminate configuration, no discernable difference

between the two constituent based failure criteria would appear. The failure surface generated
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Eglass/8084

Laminate Exp MCT/Exp Tsai-Wu/Exp Hashin/Exp
[0/90]S -381 1.01 1.01 1.01
[0/90]S 374 1.03 1.11 1.10
[0/90/+45]S -301 0.95 0.79 0.96
[0/90/+45]S 245 1.13 0.88 1.13
[+45]S -110 0.95 0.98 1.00
[+45]S 100 0.96 1.05 1.10
[SIN 537 1.09 1.01 1.01
[10]N 281 1.05 1.12 1.14
[15]N 187 1.04 1.12 1.18
[20]N 140 1.06 1.11 1.21
[30]N 93 1.06 1.10 1.20
[45]N 67 1.04 1.04 1.10
[60]N 53 1.06 1.02 1.04
Avg= 1.03 1.03 1.09
COV= 51% 9.6% 7.5%

Table 6. Summary of failure loads for E-glass/vinylester laminates.

AS4/3501
Laminate Exp MCT/Exp Tsai-Wu/Exp Hashin/Exp
[£15]S 786 1.40 2.80 1.41
[£22]S 786 1.01 2.02 1.06
[£30]S 455 1.00 2.05 1.1
[+45]S 155 0.95 1.08 1.32
[+60]S -288 0.97 1.14 1.22
[£60]S 74 1.16 0.73 0.74
[£75]S 43 1.02 0.77 0.77
[90/0]3S -1074 1.01 1.26 1.01
[(£45/02)2/90] -1074 1.03 0.67 0.98
[£45/0/90]12S -855 0.91 0.69 0.91
[+452/03/+45]S -827 0.94 0.44 0.97
[+452/03/902]S -746 1.22 0.97 1.23
[+452/90/0]1S -753 0.83 0.53 0.80
[+452/903/02]S -599 1.20 1.02 1.20
Avg = 1.05 1.15 1.05
CoOv= 14.3% 58.8% 19.8%

Table 7. Summary of failure loads for AS4/3501 laminates.
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by the MCT failure criterion and the experimental data were in excellent agreement whereas the failure
surface generated by Tsai-Wu failure criterion was not.

The lack of accuracy in the Tsai-Wu predictions can be attributed to the inability of the criterion
to distinguish between constituent failure and total failure at a continuum point. The inability of the
Tsai-Wu criterion to differentiate between minor (matrix) and major (fiber) constituent damage over
penalizes any simulation of a laminate’s load carrying capability. As noted in Hashin [3], it is essential
to know how a material has failed in a progressive finite element analysis. Clearly, this is not possible
when a criterion predicts failure without identifying a failure mode. However, MCT naturally accounts
for fiber versus matrix failure states.

The failure envelope of Figure 4 predicted by MCT appears to be nothing more than what a
maximum stress criterion would yield. This is a fortuitous result that is attributed to biaxial testing of a
[0/90]s laminate. Other stress paths produce no correlation to a maximum stress criterion. For instance,
Figure 5 shows a biaxial failure surface for a [0/90]s laminate under combined in-plane shear and normal

loading. Interestingly, Tsai-Wu and MCT failure predictions produced near identical results.

Summary

Constituent (phase averaged) stress and strain fields open a new and manageable information
window for failure analysis of composite structures. The work presented herein demonstrates that this
information adds value in the form of improved failure predictions when compared to comparable single
continuum approaches. Furthermore, this additional information is readily accessed in a finite element
environment with no computational penalty. Appropriate changes to the composite stiffness matrix due
to constituent failure are also accommodated in a rigorous and logical manner.

Finally, although the composite laminates tested as part of this research effort were under one or
two-dimensional loading, the constituents experienced a full three-dimensional stress state. The

successful failure predictions presented herein were based on MCT failure criteria that used the full
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three-dimensional constituent stress fields. Hence, there is good reason to believe that an MCT approach
will also be successful in predicting material failure in general composite structures under arbitrary three-

dimensional loading.
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ABSTRACT

Damage in a composite material typically begins at the constituent level and may, in fact,
be limited to only one constituent in some situations. An accurate prediction of constituent
damage at sampling points throughout a laminate provides a genesis for progressively analyzing
failure of a composite structure from start to finish. Multicontinuum Theory is a micromechanics
based theory and associated numerical algorithm for extracting, virtually without a time penalty,
the stress and strain fields for a composites’ constituents during a routine finite element analysis.
A constituent stress-based failure criterion is used to construct a nonlinear progressive failure
algorithm for investigating the material failure strengths of composite laminates. The proposed
failure analysis methodology was used to simulate the nonlinear laminate behavior and
progressive damage of selected laminates under both uniaxial and biaxial load conditions up to
their ultimate strength. This effort was part of a broader project to compare the predictive
capability of current composite failure criteria.

Keywords: multicontinuum, micromechanics, composite materials, failure criterion, constituent.

NOTATION

* Indicates the appropriate tensile or compressive value is used depending on the
constituent’s stress state.

{a} Vector relating constituent to composite thermal strains.

(4] Matrix relating constituent to composite mechanical strains.

CTE Coefficient of thermal expansion.

[C] Composite stiffness matrix.

[Cs]  Constituent j stiffness matrix (8 = f (fiber), m (matrix)).

F;, F; Strength parameters (i,j = 1 to 6).

I; Composite transversely isotropic stress invariants (i = 1 to 5).

Ip Constituent 3 transversely isotropic stress invariants (i = 1 to 5).

*Kis  Constituent f3 failure parameter (8 = f(fiber), m (matrix)); (i =1, 4).

¥ To whom correspondence should be addressed. Formerly of the Naval Surface Warfare Center,
Carderock Division, Structures and Composites Department, West Bethesda, MD, USA
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*S;s  Constituent A strength in the i,j direction (8 = f (fiber), m (matrix)); (ij = 1 to 3).

i"’S,-jﬂ Constituent /3 stress in the i,j direction when stress %S is applied (B = f (fiber), m
(matrix)); (ij =1 to 3); (k/=1to 3).

14 Volume.

{a}  Composite coefficients of thermal expansion.

{ais} Constituent S coefficients of thermal expansion (5= f(fiber), m (matrix));
i=1,2).

£ Composite strain tensor.

{&} Composite total strain tensor in contracted (matrix) notation.

Ep Constituent f3 strain tensor (8 = f (fiber), m (matrix)).

{eg}  Constituent J total strain tensor in contracted notation (8 = f (fiber), m (matrix)).
{g,} Composite thermal strain tensor in contracted notation.

{g5,} Constituent 3 thermal strain tensor in contracted notation (8 = f (fiber), m (matrix)).
P Constituent A volume fraction (f = f (fiber), m (matrix)).

o Composite stress tensor.
{o Composite stress tensor in contracted notation.
ot Composite stresses referenced to the local lamina (i,j = 1 to 3) or global laminate (i,j = x

to z) coordinate system.
oF Constituent /3 stress tensor (£ = f (fiber), m (matrix)).

{os}  Constituent /3 stress tensor in contracted notation (8 = f (fiber), m (matrix)).

Cijp Constituent /3 stresses referenced to the local lamina coordinate system (f = f (fiber), m
(matrix)); (i,j =1 to 3).

AT Difference between current and reference temperatures.

(1 Identity matrix.

1 INTRODUCTION

A majority of failure criteria developed for composite materials to date can be classified
as macromechanical because the criteria attempt to predict failure using composite stress-strain
data. A key element of macromechanics is the combining of constituent’s properties into a
homogeneous set of composite lamina properties and possibly combining lamina properties into
homogeneous laminate properties.

In contrast, micromechanical failure analyses retain the individual identities of each
lamina and its constituents, thereby allowing interaction among them. Composite properties are
utilized in micromechanics analyses but failure of each constituent and its contribution to lamina
and laminate failure is emphasized. All micromechanical models are predicated on a complete

set of material constants for each constituent that are consistent with those of the composite they
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form. This consistency is typically synthesized from a finite element or closed form analytical
model of the composite microstructure. Examples of micromechanical approaches can be found

in Aboudi', Pecknold?, Rahman’®, and Kwon®. A review of these approaches can be found in

Mayes5.

2 MULTICONTINUUM THEORY

Multicontinuum Theory (MCT) is a micromechanics based theory and associated
numerical algorithm for extracting, virtually without a time penalty, the stress and strain fields for
a composites’ constituents during a routine finite element analysis. MCT development is
presented in detail for linear-elastic and linear-viscoelastic composite behavior in papers by
Garnich and Hansen®’. The elasticity theory is summarized here to emphasize concepts important
to implementing a constituent based failure analysis. The present theory assumes: (1) linear
elastic behavior of the fibers and nonlinear elastic behavior of the matrix, (2) perfect bonding
between the fibers and matrix, (3) stress concentrations at fiber boundaries are accounted for only
as a contribution to the volume average stress, (4) the effect of fiber distribution on the composite
stiffness and strength is accounted for in the finite element modeling of a representative volume
of microstructure, and (5) ability to fail one constituent while leaving the other intact results in a
piecewise continuous composite stress-strain curve.

MCT begins with a continuum definition of stress at a point. The concept of stress in
homogeneous materials, such as steel, is a familiar one to most engineers. Yet, if looked at on a
microscale, one sees that the “homogeneous” material is hardly homogeneous. It is obvious that
stresses will vary significantly from point to point across different phases and inclusions. The
homogenized value used to characterize the stress tensor at a point in a single continuum material

is derived by taking a volume average of all stresses in the region as
1
o=—| o (x)av , (1)
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S - - - S

where D is the region representing the continuum point. The concept of 2 multicontinuum simply
extends this concept to reflect coexisting materials within a continuum point. In particular,
consider a composite material with two clearly identifiable constituents as shown in Fig. 1%

Using equation (1) for each constituent we can write:

1
gf=V—I g (x)av, ®
S Df
and
1
0, = [ g (av. ©)
VII! -
where
D=D,UD,. “)
Combining equations (1-3) leads to
C=0¢, 0+ Tu> )

where ¢rand ¢, are the volume fractions of fiber and matrix respectively. Likewise, for strains
we have
§:¢f§f+¢m En- (6)

It is important to note the averaging process that results in these equations. That is, we
are not concerned with stress and strain variations through individual constituents within D but
only with their average values. This is an information compromise that separates structural
analysis from micromechanical analysis. Accounting for stress variations throughout every fiber
at every material point in even a modest structure is simply not possible or desirable. In contrast,
providing constituent average stress and strain fields opens a new and manageable information
window on a composite material’s response to a load.

Changing from direct tensor to contracted matrix notation, the elastic constitutive laws

for the composite and the constituents are given by
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{oy=[c](e}-{e.)) . ™
o b=l (e, 1-1e0)) - ®)
and | |
fo.1=1C. (e} -{en)) - ©)
Combining equations (5-9), constituent fiber and matrix strain fields, {& }and

{&, } respectively, are derived from the composite strain field {&} using

e )=, 1]+, [4)" ({e}-aT{a}) | (10)

and
{ef}=¢i &)=, (2a)) an
S
where
[A]=—j;'" (tc1-Ic, 1) (cl-1c.D) »
S
and

() =([c1-Ic, D™ ([cl a3 -¢,lc, K, }-d.0C. ) an}) -
An isothermal version of equation (10) appeared in early work by Hill’. Typically [C],
[C.), {a}, and {a,}, are developed from known material properties of the constituents, while [C]
and {a} of the composite are developed from micromechanical modeling of an assumed fiber-
matrix distribution incorporating the constituent material properties. Hence, [4] and {a} are
known a priori to a structural analysis. A major advantage of a MCT analysis is the increased
computational efficiency gained by the theory’s decoupling of micromechanical modeling from

structural analysis.

MCT’s ability to calculate accurate constituent stress and strain fields is dependent on
constituent elastic constants derived from experimentally determined composite values. Further,
MCT’s ability to execute realistic failure analysis is dependent on accurate values for constituent

strength parameters, also derived from experimentally determined composite values. The link
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establishing a relationship between composite (macro) and constituent (micro) elastic constants is
a finite element micromechanics model for a continuous fiber unidirectional composite. The
finite element micromechanics model used in this research was advanced by Garnich'® which
contains discussion of its development. Only major components of the model will be
summarized here.

The micromechanics model is based on an assumption of uniform hexagonal fiber
packing within the lamina’s matrix (Fig. 2). A unit cell, representative of the repeating
microstructure, is extracted from a region bounded by symmetry lines. Unit cell geometry, fiber
volume fraction, and boundary conditions are used to define the finite element model (Fig. 3).
The unit cell is based on a generalized plane strain assumption in the fiber direction but is fully
three-dimensional. The cell is modeled with a finite element scripting language allowing material
properties and fiber volume fraction to be varied as required. Boundary conditions'*"! necessary
to enforce compatibility of unit cell boundaries with adjacent unit cells are generated
automatically. Four linear elastic load cases are solved (longitudinal tension, transverse tension,
transverse shear, and longitudinal shear) to determine and verify five independent elastic
constants for transversely isotropic composite lamina.

All constituent elastic constants (Tables 1-2) and strengths (Tables 3-4) were backed out
via the micromechanics model from experimentally determined composite values provided by the

organizers'”. These in situ constituent values used in the MCT analyses conducted herein were

different than those presented for this exercise by the organizers.

3 FAILURE CRITERION

The Maximum Distortional Energy, or von Mises, criterion is the most widely used
criterion for predicting yield points in isotropic metals". The isotropic von Mises failure criterion

is a special case of a general form of quadratic interaction criteria, so named because they include
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terms to account for interaction between the stress components. Variations of the general criteria
have been used to predict brittle failure in orthotropic materials'®.

A generalized quadratic interaction failure criterion, suggested by Gol’denblat and
Kopnov'® and proposed by Tsai and Wu'®, is given as

Fo, +Ejo-iaj =1, (12)

where F; and Fj; are experimentally determined strength tensors and contracted tensor notation is
used (i,j = 1 to 6). Hoffman'” has suggested that the linear terms, F;, are necessary to account for
differences in tensile and compressive strengths whereas Tsai and Wu state that they are
necessary to account for internal stresses. Tsai and Wu'® presented a form of equation (12) for

transversely isotropic composites as

2 2 2 2 2 2
Foy +Fz(0'22 +0'33)+F”O'” +Fzz(o'22 +03 +20—23)+F66(O-12 +0'13)

(13)
+2F, (O-no'zz +0,,03; )+ 2F,, (022633 ~o5, )= 1.
Hashin'® developed a three-dimensional, stress interactive, failure criterion for
unidirectional lamina that recognized two distinct and uncoupled failure modes. While the failure
criterion itself was based on composite stresses, it constructs a piecewise continuous failure form
based on constituent failure modes. The failure criterion assumes transverse isotropy for a
unidirectional composite. A local orthogonal coordinate system is defined in which the fiber axis
serves as the principal, x,, material direction, and x;, x; the transverse and through-thickness
directions. The failure state of the material is expressed in terms of transversely isotropic stress
invariants. Although Hashin derived these invariants, Hansen", in development of an anisotropic

flow rule for plastic behavior in composite materials, presented a different form used within this

paper. The five transversely isotropic stress invariants are:
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I, =0y,

I, =0, +0y,

I, =0}, +05, +203, (14)
4 =0'122 +0'123’

I = 0'220'122 + 03,07 +201,0,,0,;.

Hashin’s choice of a quadratic form eliminates /5 from appearing in the failure criterion.
Therefore the most general form for a quadratic criterion'® is
K1 + LI +K,1, +L21'22 +M, LI, +K,I,+K,I, =1, (15)
where K, L;, and M,, are experimentally determined failure coefficients.

At this point, it is instructive to compare the criterion of Tsai and Wu with that of Hashin.
Rewriting equation (13) in terms of the transversely isotropic stress invariants gives
Fl,+FI,+ F”I]2 +F,l, +F I, +2F,11, + 2F23(]22 —13)= 1,
or rearranging,
FI, +F, I} +F,I, +2F, 12 + 2F, 1,1, +(F,, = 2F,;)I, + Fy I, =1. (16)
Comparing equation (16) to equation (15), shows that the Tsai-Wu criterion for
transversely isotropic materials and the Hashin failure criterion have the same functional form.
Their difference is in defining the coefficients of the stress terms. The Tsai-Wu equation is used
to define a smooth and continuous failure surface in both the tension and compression regions of
space. As a result the coefficients are functions of both tensile and compressive composite
strengths. In contrast, Hashin identified two composite failure modes; fiber versus matrix
influenced, and developed separate equations based on the failure mode to determine a failure
state. Hashin further recognized that a composite typically has different ultimate strengths in
tension and compression, so both fiber and matrix failure criteria have tensile and compressive
subforms. Hence the coefficients of the stress terms are functions of only tension or compression

strengths resulting in a piecewise continuous stress-space failure surface.
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In what follows, we adopt the view of Hashin and develop separate failure criteria for the
fiber and matrix failure modes. However, in 2 major departure from Hashin’s work, we develop
failure criteria in the form of equation (15) for each constituent as opposed to the composite by
utilizing constituent stress information produced by MCT. As a consequence, the transversely
isotropic stress invariants, defined in equation (14), were used for each constituent of the |
composite material under consideration. Furthermore, recognizing that constituents typically

have different ultimate strengths in tension and compression, each constituent failure criterion has

a tensile and compressive subform.

A unique aspect of the MCT failure theory is that an anisotropic failure theory is used on
an isotropic matrix material. This complexity is necessitated by the fact that the matrix failure
behavior will be anisotropic due to microstructural geometry. The root of this phenomenon can
be conceptualized by considering a transversely isotropic unidirectional composite. If all fibers
were removed but their holes retained only a matrix of “Swiss Cheese” would remain. Because
of the remaining microstructure, macroscopic failure of the material will be fundamentally
different in axial versus transverse directions resulting in a transversely isotropic failure envelope.

As a first approximation, we would like to simplify equation (15) for each of the
constituents. Pipes and Cole*® demonstrated some of the difficulties in experimentally
determining stress interaction terms such as M, analogous to F, in the Tsai-Wu theory. Further,
Narayanaswami’' demonstrated numerically that setting the stress interaction term F, to zero in
the Tsai-Wu quadratic failure criterion in plane stress analyses resulted in less than 10% error for
all the load cases and materials considered. Hence, we set M, equal to zero. Tsai and Wu
identify the linear terms in equation (13) as necessary to account for internal stresses. Internal
stresses refer to self equilibrating stresses within each constituent which, when added together
according to equation (5), produce no composite stress. Internal stresses may arise in composites
operating at a temperature other than the reference temperature due to a mismatch in constituent
coefficients of thermal expansion. These internal stresses are accounted for in the formulation of
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Multicontinuum Theory through the {a} vector. Thus we eliminate the linear terms from

equation (15). If analytical comparisons against experimental results do not provide a satisfactory
correlation, these terms, along with the term M,,, could be reexamined for their potential
contributions.

Noting the above, the general form for a stress interactive failure criterion, after changing
to a consistent coefficient notation, is given by

KI}+K,I;+KJI,+K,J,=1. 17)

Developing a form of equation (17) for fiber failure we note that the majority of fibers
used for composite reinforcement have greater transverse strengths than the matrices commonly
used in conjunction with them. Hence, we assume that transverse failure of these composites is
matrix dominated. Based on this assumption, we set K and K3 equal to zero in equation (17) as
their associated stress invariants involve transverse normal stresses. The fiber failure criterion

reduces to
2
K1f11f+K4fI4f=l. (18)
To determine coefficients for each stress term, we solve equation (18) considering
individual load cases of pure in-plane shear, tension, and compression applied to unidirectional

lamina. For the case of in-plane shear load only (& # 0, o1,,=0), we find

where, S, denotes fiber shear strength. For the case of tensile load only (a,,> 0; 6i5r= 0), we
find

1
1f +S121f '

K

For the case of compression load only (61, < 0; 015r=0), we find
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- 1
Kiyy=—o

1y
The criterion for fiber failure can now be expressed as

*K I +K, 1, =1 (19)
The + symbol indicates that the appropriate tensile or compressive ultimate strength value is used

depending on the constituent’s stress state.

To determine the coefficients of equation (17) for matrix failure we first solve the
equation considering load cases of pure in-plane and transverse shear. For the case of transverse
shear only (G3sm # 0, Gi1m= C22w™= Gs3m= Oi2n= 0), we find

1

K, = .
> 2S223m

For the case of in-plane shear only (Gi2m # 0, Giim= O22m =033 =C23m ™= 0), we find

1

= 3 .
SlZm

K4m

Noting that a majority of fibers used for composite reinforcement have greater longitudinal
strengths than the matrices commonly used in conjunction with them, we assume that the
longitudinal failure of these composites is fiber dominated. Based on this assumption and some
numerical sensitivity studies we set K, equal to zero. The approach to our ‘sensitivity analysis’
was to conduct failure analyses, with and without parameter K, in the proposed failure criteria,
on all available test cases. We determined that the presence of K, did not significantly affect
failure predictions results for those cases. Incorporating these results into (17) gives

1
7L t 1
2S23m S12m

K, I + I,, =1. (20)

To determine K,,, we consider the case of transverse tensile load only ((63m+033m) > 0, O

=0y, =0) and find
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+K _ 1 1 _ +SéZZm ++225§3m
2m + +22 2 2S2 )
( Syam* -S33m) 23m

The numeric superscripts (“22”) in the above failure parameters are used to denote the direction
of the applied load. Note that while a pure transverse (one-dimensional) load, 63,, on a composite
lamina results in

0, =05, =0,
the constituents experience a fully three-dimensional stress state®’. Likewise, for the case of a

pure transverse compressive load ((Gaam +033m ) < 0, O3, =012, =0)

- 1 —SZZZm +—22S323m
K2m = _ -2 2 1 - 2S 2 ’
( S22m + S33m ) 23m

The criterion for matrix failure can now be expressed as

I? +K. I. +K

iKZm 2m 3m~* 3m ]4m =1' (21)

4m
Transverse shear strength values were not provided as part of the material

characterizations provided by the organizers'z. Parameter *K.,, is highly sensitive to these values

and rather than risk using inaccurate values, the matrix failure criterion was modified. Expanding

equation (21) in terms of local stress components gives
+ 2 2 2 2 2 2 Y
K, (O'zzm T 03, ) +K, (0-22”1 +03, +20, )'*' Ky (o-l.‘Zrn +Oam )— 1.
For the load cases considered in this paper, no transverse shear stresses arise in the constituents so
we set 033, = 0 and rearrange the above as

(Ko + K3, )00 +(°Kp, + K3, )05, 4K, (205,035, )+ Ko (0'3:12 + 0'123,»;):1- (22)

2m 3m

“*K.,n scales a stress interaction in the third term of equation (22). We set this scale factor to zero

as was done previously in the simplification of equation (15). This results in

+ 2 2 2 2
K, (0Cpm +053,)+ Ky, (O'nm + 03 )= 1.
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Therefore, in terms of the transversely isotropic stress invariants, the modified matrix failure
criterion becomes

*K, I, +K, 1, =1, 23)

Im

where

iK — 1

The mode of failure, fiber or matrix, is determined by monitoring their failure criteria given
by equations (19) and (23), respectively. The relative contribution of the various stress
components to initial, intermediate, and final failure states can be determined by examining the
product of the failure parameter K and its associated stress invariant ;5 (For examples, see Table

6 through Table 13).

4 DESCRIPTION OF ANALYSIS METHOD

A numerical MCT algorithm, based on equations (10) and (11), was developed and
incorporated into an in-house finite element code’>. While the finite element approach may be
more powerful than necessary for the analyses conducted as part of this exercise, the
methodology was originally developed for failure analyses of general composite structures.
Using the finite element framework provides a high degree of analytical flexibility.

A majority of composite materials in use today have organic matrices that produce
significant nonlinear shear stress-strain behavior as demonstrated by the shear stress-strain curves
presented by the organizers'?. For the research considered herein, unloading or sustained creep of
the composite was not a consideration. Therefore, a nonlinear-elastic constitutive model, as
developed by Mayes®, relating changes in elastic constants due to changing composite shear

modulus was used. The model uses a three-term exponential series of the form

=B, +B,e™) + B, 24
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to fit in-plane experimentally determined composite shear stress-strain curves. B;and ; are curve
fit parameters, 7 is shear stress (Pa), and yis engineering shear strain (dimensionless). Nonlinear
regression was used to fit the five equation parameters to experimental shear data (Table 5). A
strain dependent, tangent shear modulus was computed from the first derivative of equation (24)
for use during a finite element analysis. Tension and compression elastic moduli for all lamina
were assumed to be constant.

In the finite element method, numerical integration samples stress, strain, and material
values at Gauss quadrature points. MCT failure analyses store a state variable corresponding to
composite material damage for every Gauss point. Three composite material conditions or states,
listed in increasing damage severity, are defined as:

1.Undamaged composite,
2.Composite damaged by matrix failure, and
3.Composite damaged by fiber failure.

When either constituent fails, all its moduli are immediately reduced to a near zero value
at that Gauss point. Near zero values are used rather than zero to avoid numerical difficulties.
Matrix moduli are reduced to 1% of their original value. Fiber moduli, which are typically one to
two orders of magnitude larger than matrix moduli, are reduced by whatever percentage is
required to bring damaged fiber values to the same magnitude as damaged matrix so that near
zero stiffness values are the same for both constituents. Poisson’s ratios remain constant. Their
values are rendered irrelevant by the use of near zero moduli values which scale elements of the
stiffness matrix, [Cp), to near zero values. Since all constituent properties, both intact and failed,
are known a priori, the micromechanics model (Fig. 3) is used to determine two additional sets of
composite properties, corresponding to damage states 2 and 3, before conducting a MCT failure
analysis.

The nonlinear character of a failure analysis requires the load to be incrementally applied

and the damage tracked progressively. Initially, composite material properties are set to an
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undamaged condition. At each load step a damage algorithm, using the failure criteria formulated
in equations (19) and (23), checks every Gauss point for constituent failure based on cumulative
stresses. When constituent failure is detected at a Gauss point, stresses are recalculated using
accumulated strains and updated material properties. Gradual goftening of the structure due to
composite damage at the Gauss points and a nonlinear-elastic constitutive model causes an |
equilibrium imbalance between the applied (external) and resisting (internal) load vectors. A
standard Modified Newton-Raphson nonlinear iterative procedure within each load step
calculates differences between external and internal load vectors and applies it to the structure as
a “virtual” load. The net effect is to increase nodal displacements, hence Gauss point strains and
stresses, until equilibrium is restored and the next load step is then applied.

Structural failure of a laminate is defined as that point in the load history when the
structure can no longer support the accumulated load and deflections begin to grow without
bound. Unbounded growth is detected during equilibrium iterations by monitoring changes in the

Euclidean (L,) norm of the structural displacement vector.

5 MCT SIMULATIONS OF LOAD-RESPONSE TO FAILURE FOR SELECTED
LAMINATES

Unidirectional (UD) E-glass/LY556/HT907/DY063 and T300/BSL914C lamina failure
envelopes under biaxial normal-shear loads are shown in Fig. 4 and Fig. 5. These failure
envelopes were symmetric about the abscissa and showed a typical quadratic shape caused by
interactions between normal and shear stresses in the failure criteria. The weaker matrix was the
primary load carrying constituent in the o;-7,, loading of the unidirectional (UD) E-
glass/LY556/HT907/DY063 lamina. Thus matrix failure determined the final failure envelope.
In contrast, the stronger fiber was the primary load carrying constituent in the o;- 7, biaxial
loading of the T300/BSL914C lamina. As a result the lamina failure envelope is sharply skewed

in the o, direction. The failure envelope for a UD E-glass/MY750 lamina under biaxial c,/c,
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load is presented in Fig. 6. This envelope was characterized by a distinct transition from fiber to
matrix failure resulting in a shape analogous to one that would be produced by a simple
maximum stress failure criterion (*oy/"S;r or *Gjjn/"Sjw). Initial and final lamina failure envelopes
in Fig. 4 through Fig. 6 were identical.

Initial and final failure envelopes for an E-glass/LY556/HT907/DY063 [90°/+30°]s
laminate under biaxial o, /o, load are shown in Fig. 7. The final failure envelope exhibits a
complex shape because of stress interactions between lamina and changing failure modes
between constituents. Results for the initial and final failure envelopes are summarized in Table

6 and Table 7.

The horizontal edge of the initial failure envelope, points a to b, was caused by matrix
tensile failure in the £30° lamina. The right edge of the initial failure envelope between points b
to ¢ is due to matrix tensile failure 90° lamina. Intermediate damage, in the form of matrix
failure, occurred later in the +30° lamina due to combined tensile and shear stresses. Note that in
this regime, all matrix in the laminate had failed but the laminate continued to sustain load.
Between points ¢ and d, initial matrix damage slowly switches to a combined compression and
shear failure in the £30° lamina. From points d to e, the initial and final failure envelopes
coincided with compressive matrix failure in the £30° lamina controlling the mode. Initial failure
from points e to a was due to matrix compressive failure in the 90° lamina.

Along the upper edge of the final failure envelope from points A to B, failure began with
combined fiber compression-shear failure in the +30° lamina and shifted to fiber tensile failure in
the 90° lamina. Catastrophic laminate failure occurred between points B and C due to combined
fiber tensile-shear failure in the £30° lamina. Fibers in the 90° lamina were still intact. A change
in the failure envelope shape occurred between points C and D where the failure mode switched
to compressive fiber failure in the 90° lamina (in the tension-tension quadrant I) leaving fibers in
the £30° lamina intact. Between points D and E, simultaneous fiber failure occurred in the 90°

40




(compressive) and £30° (shear) lamina. From points E to F, catastrophic laminate failure became
increasingly dependent on fiber shear failure in the £30° lamina. From points F to G, the initial
and final failure envelopes coincided with compressive matrix failure in the £30° lamina which
precipitated fiber compressive failure in the 90° lamina. The mechanism for final failure shifted

to fiber shear in the in the 30° lamina for the points G to H.

Initial and final failure envelopes for an E-glass/LY55/HT907/DY063, [90°/+30°]s
laminate under biaxial, 6;/z,, load are shown in Fig. 8. The failure envelope was symmetric

about the o, axis. Results for both failure envelopes are summarized in

Table 8 and Table 9.

Initial laminate damage in quadrant II, between points a and b, was due to compressive
matrix failure in the 90° lamina. Initial failure between points b and ¢ began with combined
compression/shear matrix failure in the 90° lamina and tensile/shear matrix failure in the -30°
lamina. The failure mode shifted to matrix tension closer to point c. Between points ¢ and d,
initial failure was due to tensile matrix failure in the 90° lamina.

The step-like shape of the final failure envelope between points A to B was caused by
fiber failure oscillating between the £30° lamina under combined compressive and shear stresses.
In the region about point B, the initial and final failure envelopes coincided. Simultaneous matrix
failure in the 90° (compressive) and -30° (tensile) lamina precipitated fiber failure in both the -
30° and +30° lamina. From point C to D, the final failure mode transitioned from fiber
compressive failure at C to fiber tensile fiber failure at D in the -30° lamina. At point E, the final
failure mode switched to tensile fiber failure in the +30° lamina but became increasingly
dependent on the shear contribution as one moved towards point F. At point G, final failure

began as matrix failure in the -30° lamina, due to combined tensile and shear stresses, which

precipitated fiber shear failure in the +30° lamina. A shape change in the failure envelope
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occurred at point H due to a switch in failure mode to simultaneous fiber failure in the +30°

lamina (tensile and shear) and 90° lamina (tensile).

Both initial and final failure envelopes for a AS4/3501-6, [0°/£45°/90°]s laminate under
biaxial, o, /oy, load are shown in Fig. 9. The failure envelope was symmetric about a line through

points A and H. Results for the failure envelopes are summarized in

Table 10 and Table 11.

The initial failure envelope between points a and ¢ was defined by matrix tensile failure
in the 90° lamina. At point a, simultaneous matrix failure occurred in all lamina but the laminate
retained the ability to sustain load. Later in the load history intermediate laminate damage, in the
form of matrix failure in the +45° lamina, occurred to the right of points b to ¢ due to combined
tensile and shear stresses. The initial and final failure envelopes coincided at point c. Failure
there was due initially to matrix failure in the 90° (tension) and +45 (shear) lamina precipitating
compressive fiber failure in the 90° lamina.

Final failure between points A and B was due to fiber tensile failure in the 0° lamina. An
abrupt change in shape of the failure envelope occurred at point B as the failure mode shifted to
fiber shear stress in the +45 lamina. Between points C and D tensile fiber failure in the 0° lamina
and compressive fiber failure in the 90° lamina determined final laminate failure. Fiber shear
stresses precipitated failure in the +45° lamina between points D and E. From points F to H final
failure was determined by compressive failure of the fiber in the 90° lamina.

The stress-strain curves for a AS4/3501-6, [0°/+45°/90°]s laminate under uniaxial tension
o,/0; = 1/0 and o;/0, = 2/1 are shown in Fig. 10 and Fig. 11, respectively. Strain jumps in both
plots indicate that initial laminate damage occurred due to transverse matrix tensile failures in the
0° lamina. Intermediate damage in the form of matrix failure in the +45° lamina was caused by

combined shear and tensile stresses. Under the 0,/0; = 2/1 load, additional intermediate damage
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occurred through tensile matrix failure in the 90° lamina. Final failure in both laminates was

caused by tensile fiber failure in the 90° lamina.

The E-glass/MY750/HY917/DY063 failure envelope for a [+55°]s laminate under
biaxial, o; /03, load is shown in Fig. 12. Initial and final failure envelopes were identical. Results
for the failure envelope are summarized in Table 12.

Tensile matrix failure in all lamina determined failure from points A to B. Itis
interesting to note that the E-glass/LY55/HT907/DY063, [90°/£30°]s and the AS4/3501-6,
[0°/+45°/90°]s laminates under o, /o; loading also experienced complete matrix failure in
quadrant I but continued to load. From points B to D, rising shear stresses combined with tensile
stresses to cause matrix failure. The rough envelope edge around point C was due to the manner
in which the load was applied, i.e., load step size and o, /c; ratio, and does not have physical
significance. From points D to E fiber failure under combined shear and compressive stress
caused laminate failure. Matrix failure due primarily to compreésive stresses determined the
failure envelope from points E to F. Rising shear stresses combined with the compressive
stresses caused matrix failure between points F and G. Failure due to fiber shear stress began at

point G and slowly shifted to fiber tensile failure at point H.

Non-linear shear behavior characterized the stress-strain curves of the E-
glass/MY750/HY917/DY063, [£55°]s laminate under uniaxial load, o, /o, = 1/0, as shown in Fig.
13. Catastrophic laminate failure was caused principally by shear failure of the fibers. Non-
linear shear effects did not become significant for the [+55°]s laminate under biaxial loading, o,
/o, =2/1, (Fig. 14) because catastrophic matrix tensile failure occurred at relatively low strain
levels.

The E-glass/MY750/HY917/DY063 stress strain curves for a [0°/90°/0] laminate under
uniaxial load 6,/G, = 1/0 are shown in Fig. 15. Initial laminate damage due to tensile matrix

failure in the 0° lamina occurred at approximately one-third of the ultimate laminate load. This
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damage is a consequence of the load being applied transversely to the fiber direction in the 0°
lamina. Intermediate laminate damage, which was also in the form of matrix tensile failure,
occurred in the 90° lamina. This matrix damage was interesting because it occurred in the
principal load bearing (o7yy) direction which was aligned with the load. Note that there is no term
in the matrix failure criterion, equation (23), involving stress oj,. Therefore this matrix failure
was caused by transverse, 3, and O, stresses arising from Poisson’s effect. Tensile fiber

failure in the 90° lamina resulted in final laminate failure.

Stress-strain curves for a E-glass/MY750/HY917/DY063, [+45°]s laminate exhibited near
linear response under a;/0;, = 1/1 biaxial load as shown in Fig. 16. Catastrophic tensile failure of
the matrix occurred before any significant lamina shear stresses developed. In contrast, Fig. 17
shows a highly nonlinear stress-strain response in a [+45°]s laminate under o;/o; = 1/-1 biaxial
load. These shear induced, laminate strains did not become significantly nonlinear until about the
0.5% level which was approximately twice the ultimate laminate strain in the previous 0,/c; =

1/1 load case. Laminate failure under biaxial load 6;,/0; = 1/-1 is due to fiber shear failure.

6 COMMENTS ON THE MCT FAILURE RESULTS

The failure load (stress) for individual points on a failure envelope was taken as the value
at the beginning of the load step in which failure occurred. The failure value is therefore
dependent on the size of the load step but will monotonically converge with decreasing load step
size. Generally the lack of smooth failure envelope edges, (e.g., Fig. 8 in the I and III quadrants)
is a result of discrete loading ratios and load step size and has no physical significance.
Generating a single 2-dimensional failure envelope took on the order of a hundred finite element
runs so time constraints prevented detailed convergence of the failure surfaces. Other rough
edges, e.g. Fig. 8 on the positive o axis, are due to changes in failure modes from matrix to fiber

and may have physical significance.
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Establishing initial, intermediate, and final failure envelopes serves to highlight the
importance of assessing constituent damage in a structural analysis. The practical implications of
the different failure surfaces are in establishing allowable stress levels in a composite design,
.e.g., at what degree of laminate damage is composite ‘failure’ deemed to have occurred?

The MCT approach to failure analysis requires identifying constituent failure modes from
composite test data. Identifying the constituent that precipitates failure in longitudinal and
transverse lamina tension and compression tests is intuitive and straightforward, i.e., fiber failure
for longitudinal loads and matrix failure for transverse loads. Identifying the constituent leading
to shear failure is more problematic, as non-catastrophic matrix and fiber damage begins well
before ultimate composite strength is achieved®. Ultimate constituent shear strengths have
previously been determined by utilizing nonlinear regression analysis of load cases involving
varying amounts of combined normal and shear stresses’. Specifically, we make an educated
guess as to each constituents shear strength and then use that data to predict lamina failure in off-
axis tension tests. Using the experimentally determined lamina failures and our initial guess, we
iterate with additional guesses until failure predictions based on constituent shear failure produce
composite failures that more or less agree with the experimental data. Armed with these semi-
empirical constituent shear strengths we have increased confidence in analysis of more complex
problems involving shear.

Data from off-angle, balanced, symmetric laminates, [+8]s, provide an excellent basis for
determining a best fit determination of failure parameters Sy, , S23m , and S5 Hence, some of
the laminates analyzed as part of this exercise would, in a normal case, be used as inputs to the
failure prediction process.

Thermal effects due to curing were neglected in all analyses conducted as part of the
failure exercise. However, as noted previously, in sifu material properties, as determined from
finite element micromechanics, were utilized in this failure analysis. Differences between the in

situ properties used herein and those provided by the organizers may be explained in part by
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residual thermal stresses. MCT can account for post-cure thermal effects through the thermal
vector, {a}, in equation (10).

MCT’s handling of thermal effects can be demonstrated using the E-
glass/MY750/HT917/DY063 composite as an example. The organizers provide a stress-free
reference temperature of 120 °C for this material. We assume that uniaxial testing used to
determine lamina composite tensile strengths occurred at 20 °C. Conducting an MCT analysis of
the uniaxial strength test, with a AT = -100 °C, we backed out the temperature adjusted normal
constituent tensile strengths shown in

Table 13. A negative AT produces internal matrix tensile stresses. Accounting for this
internal tensile load has the net effect of increasing matrix tensile strength and reducing matrix
compressive strength. A 4 7= -100°C has no significant effect on the E-glass fiber normal
strengths. Next we reanalyzed test case numbers 12 and 13, i.e., 6,/0, = 1/0 loading of the
[£45°]s and the [0°/90°/0°] laminates, again assuming a AT =-100°C. The MCT program applies
AT in its entirety as a uniform temperature in the first load step.

In the thermal analysis of the [0°/90°/0°] laminate, shown in Figure 19, applying a AT = -
100°C in the first load step initially caused both laminate strains, & and g, to be negative. As the
y-direction mechanical load increases, the total strain in that direction becomes positive. We note
that by defining the strain to be zero under a composite stress-free state, and after the thermal load
has been applied, the initial jump into negative strain territory would not appear.

The presence of residual stresses in the thermo-mechanical analysis have an interesting
effect on the matrix failures occurring during the loading program. Specifically, the residual
stresses lead to a decrease in the initial failure stresses and an increase in the intermediate failure
stresses when compared to the pure mechanical analysis. This phenomenon is attributed to two

competing effects of the residual stresses.
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To begin, we emphasize that matrix failures in this load case are due to stresses
transverse to the fiber. Furthermore, Table 13 shows the residual stresses have the effect of
increasing the temperature adjusted transverse tensile strengths. Countering the effect of
increased matrix transverse strengths is the presence of large residual stresses due to the thermal
load (See Table 14). Focusing on 6y, in Table 14, the residual matrix stress varies due to the
constraining influence of adjacent lamina and, in fact, is significantly larger in a 0°/90° laminate
as compared to a unidirectional laminate. The increase in residual stress in the 0°/90°
configuration more than offsets the increased transverse tensile strengths in the residual stress
analysis. The net effect is that failure occurs earlier in the thermo-mechanical problem as seen in
Figure 18.

The MCT analysis of the thermo-mechanical problem also shows that initial matrix
failure in the 0° lamina produces significant matrix stress relief in the 90° lamina. The stress
relief is sufficient such that the increased matrix strengths in the thermo-mechanical analysis
dominate any remaining residual stress effects. The result is an increase in the predicted
intermediate failure stress when compared to the purely mechanical analysis.

The data listed in Table 15 show that the ultimate strength of the [+45°]s laminate under
uniaxial load is significantly reduced due to the combination of thermal and mechanical induced
matrix tensile stresses. As in the case of the [0°/90°]s laminate, the orthogonal orientation of the
+45° lamina fibers restrains the matrix thermal contraction inducing high matrix tensile stresses.
Strength of the [+45°]s laminate under biaxial, o;/c; = 1/1, loading, shown in Fig. 19, is also
significantly lowered in the presence of a thermal load AT =-100°C. Even though composite
strains in the x and y directions are negative throughout the load history, the laminate fails due to

matrix tensile stresses.

Clearly the exercise above indicates that thermally induced residual cure stresses can be

important. But the absence of a precise thermo-mechanical constitutive law describing the
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complex interactions between the fiber and the liquid-to-solid transition of the matrix occurring at
high curing temperatures, makes accounting for stresses induced during the cure process a

questionable endeavor.

7 CONCLUDING REMARKS

MCT is a fully 3-dimensional failure prediction methodology intended to efficiently
bring constituent information to bear on the analysis of general composite structures. Because
failure of composite laminates begins at the constituent level, the constituent information
provided by MCT has tremendous value. Accurate predictions of constituent level failure, within
the framework of the finite element method, enables development of a progressive failure
analysis for general structures. Permitting only one constituent to fail while keeping the others
intact allows load redistribution to other parts of the structure as well as to the remaining
constituents. Material failure can be tracked as it occurs region by region. The stiffness and
strength of damaged areas can be reduced without necessarily declaring total structural failure.
This approach has not been incorporated in general design practice in the past because constituent

information was generally unavailable in standard finite element analysis.
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Fig. 1 Composite lamina as a multicontinuum.
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Fig. 2 Idealized lamina microstructure.
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Fig. 3 Finite element model of a unit cell created using the ANSYS software.
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Fig. 4 Failure envelope for a [0 lamina made from E-glass/LY556/HT907/DY063
under biaxial, 0,/1%y, load.
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Fig. 5 Failure envelope for a [0 lamina made from T300/BSL914C under biaxial,
/Ty, load.
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Fig. 6 Failure envelope for a [0 lamina made from E-glass/MY750/HT917/DY063
under biaxial, /0y, load.
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Fig. 7 Failure envelope for a [90 730 9 s laminate made from E-glass/LY556/HT907
/DY063 under biaxial, c,/0, load.
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Fig. 8 Failure envelope for a [90 Y+30 9 s laminate made from E-glass/LY556/HT907
/DY063 under biaxial, o:/1, load.

56




Final failure envelope

-1000 —

Fig. 9 Failure envelope for a [09+45 990 9 s laminate made from AS4/3501-6 under
biaxial, 0;,/ox, load.
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Fig. 10 Stress/strain curves for a [09445 990 s laminate made from AS4/3501-6 under
uniaxial tension load o,/o; = 1/0.
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Fig. 11 Stress/strain curves for a [09#45 790 9 s laminate made from AS4/3501-6 under
biaxial tension load oy/0; = 2/1.
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Fig. 12 Failure envelope for a [#55 9 s laminate made from E-glass/MY750/HT917
/DY063 under biaxial, o,/0, load.
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Fig. 13 Stress/strain curves for a [#55 9 s laminate made from E-glass/MY75 0/HT917 ‘ {
/DY063 under uniaxial tension load o,/o; = 1/0.
(
(
{

61




120 —
€

€, Matrix tensile failure y

80 —
©
o
=
= 4
n
»
o
73]

40 —

0 ' | ! | ! | z
0.00 0.10 0.20 0.30 0.40

Strain %

Fig. 14 Stress/strain curves for a [155 9 s laminate made from E-glass/MY750/HT917
/DY063 under uniaxial tension load o,/c; = 2/1.
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Fig. 15 Stress/strain curves for a [0790 %0 laminate made from E-
glass/MY750/HT917/DY063 under uniaxial tension load o,/o; = 1/0.
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Fig. 16 Stress/strain curves for a [#45 9 s laminate made from E-glass/MY750/HT917
/DY063 under biaxial load o,/ox = 1/1.
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Fig. 17 Stress/strain curves for a [#45 9 s laminate made from E-glass/MY750/HT917 (
/DY063 under biaxial load o,/0x = 1/-1.
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Fig. 18 Stress/strain curves for a [0%790 90 °] laminate made from E-glass/MY750/HT917
/DY063 under uniaxial tension load oy/o; = 1/0 and AT = -100°C
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Fig. 19 Stress/strain curves for a [#45 9 s laminate made from E-glass/MY75 0/HT917
/DY063 under biaxial tension load o,/c; = 1/1 and AT = -100°C.
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En Gn Vi O
Matrix (GPa) | (GPa) (10°%/°C)
3501-6 4.50 1.68 | 0.340 35
BSL914C 4.50 1.68 | 0.340 35
LY556/HT907/DY063 4.95 1.83 | 0.355 52
MY750/HY917/DY063 | 4.85 1.78 | 0.360 49
Table 1 Matrix elastic constants calculated from micromechanics.
Eiir | Exnr | Guar | G2t | viar | Vasr ouif Olz2¢
Fiber (GPa) | (GPa) | (GPa) | (GPa) (10°%/°C) | (10°°C)
AS4 207.5 | 25.0 | 95.0 | 9.20 | 0.240 | 0.359 -1.7 15
T300 227.0 | 25.0 | 28.0 | 9.50 | 0.245 | 0.316 -1.7 15
E-glass 21xK43 | 83.2 | 83.2 | 33.5 | 33.5 | 0.240 | 0.240 6.9 6.9
Gevetex
Silenka E-glass 73.0 | 73.0 | 29.6 | 29.6 | 0.235 | 0.235 6.6 6.6
1200tex
Table 2 Fiber elastic constants calculated from micromechanics.
"S22m Sum | S3m | T Szm S12m
Matrix (MPa) (MPa) (MPa) (MPa) (MPa)
3501-6 42.3 -176.3 5.52 -23.0 49.54
BSL914C 23.2 -172.2 2.73 -20.2 50.8
LY556/HT907 27.3 -88.9 4.26 -13.9 44.9
/DY063
MY750/HY917 31.5 -114.3 4.63 -16.8 46.3
/DY 063

Table 3 Matrix strengths calculated from micromechanics.
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“Sur Sur S12s
Fiber (MPa) (MPa) (MPa)
AS4 3202. -2431. 101.
T300 2466. -1480. 105.
E-glass 21xK43 Gevetex 1772. -886. 93.0
Silenka E-glass 1200tex 2040. -1275. 95.2
Table 4 Fiber strengths calculated from micromechanics
By B, B hy h;
Composite (Pa) (Pa) (Pa)
AS4/3501-6 3.31E+14 | -1.09E+14 | 4.39E+14 | -0.0536 | -0.0132
T300/BSL914C 1.64E+11 | -1.51E+8 | -1.63E+11 | -43.7 | 0.00654
E-glass/ 5.76E+10 | -9.51E+7 | -5.75E+10 | -71.9 | 0.00706
LY556/HT907/DY063
E-glass 2.69E+10 | -9.961E+7 | -2.68E+10 | -63.1 0.0161
MY750/HY917/DY063

Table 5 Nonlinear shear curve fit parameters.

Point | Lamina | Primary term | Secondary term Failure mode

a +30 Kimlzm = 1.0 Kamlam = 0.0 Matrix - tension

b 90 Kimlzm=1.0 Kamlsm = 0.0 Matrix - tension

c 90 Kimlzm=1.0 Kamlam = 0.0 Matrix - tension

d +30 Kimlzm = 0.66 Kamlam = 0.34 Matrix - comp/shear
€ 90 Kinlim=1.0 Kamlam = 0.0 Matrix - compression

Table 6 Initial E-glass/LYS55/HT907/DY063 failure envelope summary for a [90 7£30] s
laminate under biaxial, o,/0%, load. ‘
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Point | Lamina | Primary term | Secondary term Failure mode

A 30 Kudae = 0.77 Kidir=0.33 Fiber - comp/shear

B 90 K;idis=1.0 Kafss= 0.0 Fiber - tension

C +30 Kidir=0.78 Kadar=0.22 Fiber - tension/shear

D 90 Kidisr=1.0 Kudss = 0.0 Fiber - compression

E 90 Kidis=1.0 Kudss = 0.0 Fiber - compression
+30 Kylar = 0.83 Kidis=0.17 Fiber - shear/tension

F +30 Ksmlzm = 0.66 Kimlam = 0.34 Matrix - comp/shear
90 Kidis=1.0 Kafdss=0.0 Fiber - compression
+30 Kimlzm =0.97 Kamlsm = 0.03 Matrix - compression
90 Kidir=1.0 Kudsr=0.0 Fiber - compression

H 90 Kimlzm=1.0 Kamlam = 0.0 Matrix - compression
+30 Kudss=0.71 Kudsr = 0.29 Fiber - shear/comp

Table 7 Final E-glass/LY55/HT907/DY063 failure envelope summary for a [90 7430 s

laminate under biaxial, o;/0, load.

Point | Lamina | Primary term | Secondary term Failure mode

a 90 Kipnlzm=1.0 Kamlam = 0.0 Matrix - compression

b 90 Kimlzm =0.72 Kamlsm = 0.28 Matrix - comp/shear
-30 Kamlam = 0.95 Kamlsm = 0.05 Matrix - tension/shear

c -30 Kinlam=1.0 Kamlam = 0.0 Matrix - tension

d 90 Kinlam=1.0 Kimlam = 0.0 Matrix - tension

Table 8 Initial E-glass/LY55/HT907/DY063 failure envelope summary for a [90 7430 s

laminate under biaxial, 0:/0xy, load.
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Point | Lamina | Primary term | Secondary term Failure mode
A +30 Kol = 0.54 K;dir=0.46 Fiber - shear/comp
B 90 Ksmlzm = 0.72 Kamlam = 0.28 Matrix - comp/shear
-30 Ksmlzam = 0.95 Kiamlam = 0.05 Matrix - tension
-30 Kidir=0.86 Kaudss=0.14 Fiber - comp/shear
+30 Kadar=0.98 Kid;s=0.02 Fiber - shear )
C -30 Kidis=1.0 Kular= 0.0 Fiber - compression
90 Kaudas=0.91 Kidir=0.08 Fiber - shear/tension
+30 Kudsr=1.0 K;dir=0.0 Fiber - shear
D -30 Kidir=1.0 Kuur= 0.0 Fiber - tension
E +30 Kidir=0.95 Kadsr=0.05 Fiber - tension y
F +30 Kamlam= 0.72 Ksmlam = 0.28 Fiber - shear/tension
G -30 Kamlam = 0.61 Ksmlam = 0.39 Matrix - tension/shear
+30 Kudar=0.77 Kidis=0.23 Fiber - shear/tension
H +30 Kaudar=0.77 K;dis=0.23 Fiber - shear/tension
90 Kidir=1.0 Kudsr=0.0 Fiber - tension (

Table 9 Final E-glass/LY55/HT907/DY063 failure envelope summary fora [907430F s
laminate under biaxial, o/0yy, load.

(«
(
Point | Lamina | Primary term | Secondary term Failure mode
a All Ksmlsm =1.0 Kamlsm = 0.0 Matrix - tension
b 90 Kimlim=1.0 Kiarlsm = 0.0 Matrix - tension
c 90 Kimlzam=1.0 Kumlsm = 0.0 Matrix - tension
(
Table 10 Initial AS4/3501-6 failure envelope summary for a [0 790745 s laminate
under biaxial, c,/0%, load.
(
{
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Point | Lamina | Primary term | Secondary term Failure mode
A All Kidir=1.0 Kuiss= 0.0 Fiber - tension
B 0 Kidir=1.0 Kudar= 0.0 Fiber - tension

90 Kidir=1.0 Kudsr=0.0 Fiber - tension

+45 Kudsr= 0.88 Kidis=0.22 Fiber - shear/tension
C +45 Kadsr= 0.98 Kidir=0.02 Fiber - shear/tension
D 0 Kidis=1.0 Kaudss=0.0 Fiber - tension

90 Kidir=1.0 Kudsr= 0.0 Fiber - compression
E +45 Kudsr=1.0 K;d;:=0.0 Fiber - shear

90 Kidie=1.0 Kudar=0.0 Fiber - compression
F 90 Kidis=1.0 Kudss=0.0 Fiber - compression

+45 Kudsr=0.75 Kidir=0.25 Fiber - shear/comp
G 90 Kidir=1.0 Kulss = 0.0 Fiber - compression

+45 Kudsr= 0.66 Kidis=0.34 Fiber - shear/comp
H All Kidir=1.0 K4dss= 0.0 Fiber - compression

Table 11 Final AS4/3501-6 failure envelope summary for a [0790 7/+45 s laminate
under biaxial, c,/0%, load.

Point | Lamina | Primary term | Secondary term Failure mode

A +55 Kimlam= 1.0 Kamlsm = 0.0 Matrix - tension

B +55 Ksmlsm = .90 Kamlam =0.10 Matrix - tension/shear

C +55 Kimlsm = 0.62 Kamlam = 0.38 Matrix - tension/shear

D +55 Kimlsm = 0.79 Kinlzm = 0.21 Matrix - shear/tension
+55 Kudss= 0.86 Kidis=0.14 Fiber - shear/comp

E +55 K= 0.61 K;d;r=0.39 Fiber - shear/comp

F +55 Ksmlzm = 0.87 Kimlsam =0.13 Matrix - comp/shear

G +55 Kimlzm = 0.69 Kamlam = 0.31 Matrix - comp/shear

H +55 Kadse= 0.96 Kidir= 0.04 Fiber - shear/tension

Table 12 E-glass/MY750/HT917/DY063 failure envelope summary for a [£55F s
laminate under biaxial, c,/ox, load.
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Component Strength (MPa)
AT =0°C | AT=-100°C

“Sir 2040 2040
"Siir -1275 -1275

" S20m 31.5 42.0
"Som -114.3 -103.8
78 35m 4.63 15.09

*2S35m -16.8 6.3

Table 13 Effect of AT on constituent normal strengths for E-glass

/MY750/HY917/DY063.
Laminate Lamina Matrix Stresses (MPa)
Olim O22m O33m
[0°]n 27.1 10.5 10.5
[£15°]s 26.9 13.0 11.2
[£30°]s 28.4 19.5 12.5
[+45°]s 30.5 24.7 12.5

Table 14 Thermally induced matrix stresses for AT = -100°C in each lamina of selected
E-glass /MY750/HY917/DY063 laminates.

Laminate Strength (MPa)
AT =0°C AT =-100°C
[+45°]s 68.8 38.4
[0°/90°/0°] 624. 624.

Table 15 Effect of AT on ultimate strength for E-glass /MY750/HY917/DY063 laminates
under uniaxial load.
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